Search results for "participatory sensing"
showing 4 items of 4 documents
Towards a Smart Campus Through Participatory Sensing
2018
In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide users with more and more functions that make them real sensing platforms. Exploiting the capabilities offered by smartphones, users can collect data from the surrounding environment and share them with other entities in the network thanks to existing communication infrastructures, i.e., 3G/4G/5G or WiFi. In this work, we present a system based on participatory sensing paradigm using smartphones to collect and share local data in order to monitor make a campus 'smart'. In particular, our system infers the activities performed by users (e.g., students) in a campus in order …
Implementation of participatory sensing approach in mobile vehicle based sensor networks
2013
In this paper author describes his research with the goal to develop and experimentally verify specific data recording and processing methodologies based on participatory sensing approach implementation in mobile vehicle based sensor networks. To reach this goal, author performed study of literature, testing of hypothesis using general purpose computer devices, adaptation of smartphones for participatory sensing, development of special purpose embedded devices, practical experiments with selected technical equipment and software as well as gathering of experimental results and following statistical analysis. The result of this research are several data acquisition and processing methodologi…
Smartphone data analysis for human activity recognition
2017
In recent years, the percentage of the population owning a smartphone has increased significantly. These devices provide the user with more and more functions, so that anyone is encouraged to carry one during the day, implicitly producing that can be analysed to infer knowledge of the userâs context. In this work we present a novel framework for Human Activity Recognition (HAR) using smartphone data captured by means of embedded triaxial accelerometer and gyroscope sensors. Some statistics over the captured sensor data are computed to model each activity, then real-time classification is performed by means of an efficient supervised learning technique. The system we propose also adopts a …
FIRST
2018
Thanks to the collective action of participating smartphone users, mobile crowdsensing allows data collection at a scale and pace that was once impossible. The biggest challenge to overcome in mobile crowdsensing is that participants may exhibit malicious or unreliable behavior, thus compromising the accuracy of the data collection process. Therefore, it becomes imperative to design algorithms to accurately classify between reliable and unreliable sensing reports. To address this crucial issue, we propose a novel Framework for optimizing Information Reliability in Smartphone-based participaTory sensing (FIRST) that leverages mobile trusted participants (MTPs) to securely assess the reliabil…